Big Data and Analytics of Genomics Data

Douglas Ruden, Ph.D.
Director of Epigenomics
Department of Obstetrics and Gynecology
Wayne State University
Detroit, MI
Big Data In Genomics

In Humans:

Each Cell has ~4 Billion Bases

Each Cell has ~20 Million mC's

Each Tissue has up to ~1 Trillion Cells

Each Human has over 500 cell types

Each Cell has over 10 Million type of proteins and small molecules
DNA Methylation and Histones Control Gene Expression

Each Cell has 4 Billion Bases

Each Cell has ~20 Million mC’s

A Histone is Present every 250 bases

Each Histone can have over 100 modifications
Single Cell Atlases of Every Organ and Tissue

- **Drop-seq single cell analysis**
 - Distinctly barcoded beads
 - 1000s of DNA-barcoded single-cell transcriptomes

Vignette --- Mouse Cell Atlas, 250K cells
NovaSeq – DNA Sequencing Capabilities

WSU will purchase a NovaSeq600 in Fall 2018. This instrument can sequence 4 trillion bases per day (100 people at 100x coverage!). 5-10 petabytes of data per year!

Moore’s Law of DNA Sequencing – 10-fold increase in the speed of sequencing every 5 years since 1980.
Big Data in Biology – The Future

4 billion base genome (EVERYONE!)

100 trillion cells per person
- Single Cell Atlases
- Single Cell Transcriptome
- Single Cell Epigenome

10 million proteome and small molecule metabolome per cell