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Why Big Data Analytics/Technologies?
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Case Study: Enhancing Emergency Healthcare

= Current State: Ineffective service and a national crisis!
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=" Opportunity: Growing adoption of EHR systems in Hospltals
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= Approach: Data and Al to improve “real-time operational intelligence”
or enhanced “proactive orchestration” of healthcare operations!
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https://www.degruyter.com/view/j/dx.2018.5.issue-3/dx-2018-0011/dx-2018-0011.xml

Typical ED Care Giving Process

[ Acute Care |
Resuscitation > unit o
Fast Track
. J V
Patient Room ( b Physician Admission Departure
L
( o “BOARDING
Psychiatric )
Waiting - / Follow Up DELAY” FOR
Room | Other Treatment ADMITTED
_Treatment PATIENTS
258 mins

Time Stats from Henry Ford Hospital (May 2014 -Dec 2016)

e Main driver of overcrowding
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General Wisdom  EDis Conw%aﬁem
for Lack atient Beds!
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INSIGHT: “Predict” IU admissions from ED and ”tlmmg” to facilitate
proactive coordination of downstream resources/processes!
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Proactive |lU Bed “Reservations”: Modelling

Seung Yup Lee, Ph.D., Ratna Babu Chinnam, Ph.D., Evrim Dalkiran, Ph.D.

FORK-JOIN QUEUEING MODEL REPRESENTATION EXPERIMENT SETTING & RESULT:

General IU & Imperfect Disposition Decision Predictions

Departure from ED to unit  Admission from A i
Other than inpatient unit w Other than ED AssumptionE:aUC:k;raodetziessgsi?:noptrzedricst?;r:c:rfd(?g:rigi)ning ED LoS
C T T TTTTTTTTTTTTTTom T m o m e | | £ ™  BAD with reactive bed preparation of 1hr
| A | | 1100 ;e R P A
| 1 1 S, - .
I 1- TT | Tl -q _ I >30% reduction I
i L o S 90 I
: 1 p T I_ ___________ — _: : I J H sz I
I - I r I oin (] o
>
: No ! Lo | (bed assignment) & g o 0 5_0A) !
| ° L 3s 2 | reduction |
| . B £8 270 in BAD! |
| I I I Resource : R B« i I
| . \ >
| Request Fork T Fork | Fork S o I
| S | x 8 60
: 1 1 c »n I
! Remaining Vo S S
: processesin ED | ! I S5 s
: (M/M(p)f==) E >0
I oo, £ —0—ED patients —#—Non-ED patients
: Emergency Department | - < 40
P 0 0.25 0.5 0.75 1
Bed preparation . . . L.
Precision (Predictions
(M/M(3z2)/5) ( )
_ . _ INFORMS SERVICE SCIENCE
A: patient flow rates p: probability of sending bed request
NOTATION: gq:true positive probability (classifier) r: false negative probability (classifier) BEST PA PER AWARD — 201 7

U1 : lead-time for proactive bed request signal (decision variable) Uy service time at bed preparation server




Al Powered Predictive & Prescriptive Analytics

Patient Arrival
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Lab / Imaging Results

- - = —— — >

ED Process
Flow

—
—
—
JOHNATHAN SWIFT
—
JOHNATHAN
ST

HHHHHHHHHHHH [i]

AL Conditions e Un Surgical History «
View | Add View | Add

& Medications i1 & Family History
View | Add View | Ade

L Allergies s fa) Social History «
View | Add View | Add

Electronic
Health
Record

& Immunizations ¢

eeeeeeeeeeeee

ANALYTICS DEVELOPMENT:
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Lab Orders
Vendor Order 1703R7E3 added on 02/02/17, Rece

E Growing information with care
(structured & unstructured

= 005009 - CBC With Differential/Platelet J 1
data) to power predictions!

Imaging Order 1703R7E4 added on 02/02/17, Submitted
Practice Fusion Imaging Center
3165464

= 1115 - Chest X-Ray, 2 views PA and Lateral

RESULTS: 225k Patients

Prediction Models: Deep Learning using TensorFlow & NLP
Explainable Al: Gradient & Perturbation Attribution Methods
Prescriptive Analytics: Proactive Coordination Signals

>6M Text Notes
>5M Lab/Imaging Results
>90% Disposition Accuracy



Impact on ED Processes at Henry Ford Hospital
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@ Well executed Big Data Analytics can have remarkable impacts!
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