Developing a Successful Cloud Strategy

Hemant Kishan
VP of Client Engagement and COO

Tanya Atanasova
Cloud Solutions Engineer

3/23/2017
Agenda

• Intros and objectives

• The Why

• The How
 • Cloud Journey (Business Case, Strategy and Implementation)

• Demo

• Q&A
Objective

• The purpose of this workshop is to explore some of the critical factors to consider in framing a successful Cloud Strategy
 • More on the “How” not the “Why”

• Context: RightBrain Networks is an Ann Arbor-based Cloud Consultancy that is an Advanced Partner to AWS and a Silver Partner to Azure

• The strategy is based on real-world examples and client situations based on our experience in delivering cloud services
 • “YMMV”
Moving to the Cloud -- The Why
Moving to the Cloud -- The Why

• Cloud economics
• Speed and agility
• Security and risk management
• Impact to IT budget headline numbers
 • Total spend
 • Mix of spend
• Cloud Transformation -- leverage related initiatives into a broader Program
 • DevOps
 • Application modernization
 • Innovation
 • Big Data and other initiatives
Moving to the Cloud -- The How
4-Step Phased Cloud Journey

1. PoC and overall Cloud Business Case

2. Gaining experience through initial Cloud Deployments

3. Comprehensive Strategy with known end-state
 a. Hybrid vs. “All In”

4. Implementing a Cloud Transformation Program
1. Proof-of-Concept and Business Case
Assessing Cloud Features through a PoC

• Key objectives:
 • Validate networking and security
 • Stand up services (compute, storage, network)
 • Assess learning curve

• Critical Success Factors:
 • PoC success metrics (speed, cost, etc)
 • Select a relatively simple workload for the PoC (eg., simple app, test environment, etc.)
PoC Examples

• Technology evaluation
 • Product assessment

• Solution prototyping

• Test environment

• Simple application deployment
PoC Example
Business Case

• Current TCO of applications and workloads

• Projecting future state Cloud cost footprint

• Operational efficiency

• Ability to serve the business
2. Gaining Experience with the Cloud
2. Initial Cloud Deployments

• Assumes business case is promising and PoC was successful

• Example of initial production deployments:
 • Backup
 • DR site
 • Public website
 • Dev/Test environments
 • New Initiatives
 • Mobile apps
 • Big Data and BI

• Startups are “all in” from inception
3. Comprehensive Strategy
3. Comprehensive Strategy

• Large enterprises can have thousands of applications
 • That differ in:
 • RoI (TCO before and after)
 • Tech stack
 • ALM stage
• Migration Roadmap
 • What are we trying to optimize?
 • Cost, speed, risk, etc.
 • How are we selecting the migration approach?
• End-state
 • “All In” or Hybrid
 • Weight of the legacy footprint

Key Questions -- avoid “boiling the ocean”:
• Where do you start?
• What makes the most business sense?
• What migration approaches fit which applications?
Migration Approaches

• Lift & Shift -- replace like for like
 • Least effort but with minimal ability to take advantage of Cloud features
 • Can be done in least amount of time

• Cloud Optimize -- One or both of the following:
 • DevOps: construct deployment pipeline
 • Architecture enhancement: use of ASG, AZ’s or other Cloud features

• Cloud Native -- refactor/rewrite to leverage cloud native services (lambda, etc)
 • Most investment but also maximum benefits
APM and ALM

• Assessing application characteristics through Application Portfolio Management and Application Lifecycle Management is a key part of building the roadmap
 • Intersection with EA
 • Understanding whether an application is strategic or approaching EOL
 • Factoring in business criticality of an application
• For simplicity, we will bucket applications into two buckets:
 • Keep: Strategic application with anticipated continued investment
 • Deprecate: Application that is approaching EOL and/or known be replaced or retired
Summary of Factors to consider in building the Roadmap

• Inputs from ALM
 • Classified as:
 • **Deprecate**: Targeted for retirement, or replacement
 • **Keep**: Business standard and/or strategic

• Inputs from APM
 • TCO and expected Cloud savings

• Cloud Migration Approaches
 • Lift & Shift -- replace like for like
 • Cloud Optimize -- One or both of the following:
 • DevOps: construct deployment pipeline
 • Architecture enhancement: use of ASG, AZ’s or other AWS features
 • Cloud Native -- refactor/rewrite to leverage cloud native services (lambda, etc)
APM/ALM: Key Information for each app

- Application technology
- COTS or custom -- candidate for SaaS?
- Business capability mapping
- Capacity requirement: compute, storage, network
- TCO
- Number of instances
- Utilization
- EOL status

- Identified successor app
- Business strategic
- Business criticality
- BCP requirement
- Number of users
- Stateless behavior
- Usage pattern (steady, predictable peaks, unpredictable)
- Releases/year
- Deployment pipeline
- Future-state:
 - Target architecture
 - Next state TCO, Optimized state TCO

Use ALM insights to broadly classify apps as:

- Keep -- planned to be part of future app portfolio
- Deprecate -- planned to be retired or replaced
Migration Priority: Which applications do we migrate first?

- **Expected Cloud Savings**
 - **High**
 - **Low**

- **Deprecate**
- **Keep**

Why bother?
- Identify number of applications in each quadrant
- Calculate total savings per quadrant

1. Expected High Savings
- These are "keeper" applications that will deliver the highest savings

2. Expected Low Savings
- Keep

3. Expected High Savings
- Deprecate

4. Expected Low Savings
- Why bother?

Output:
- Prioritized set of apps by BU and expected savings
Migration Approach: Which approach makes the most sense?

<table>
<thead>
<tr>
<th>New Apps</th>
<th>Existing Apps</th>
<th>Deprecate</th>
</tr>
</thead>
<tbody>
<tr>
<td>COTS</td>
<td>CO</td>
<td>L&S</td>
</tr>
<tr>
<td>Custom</td>
<td></td>
<td>“Appliance”</td>
</tr>
</tbody>
</table>

Notes:
- Appliance mode: zero to minimal “care and feeding” -- for those apps that were in Category 3. Some exceptions can be CO.
- Most Category 1 and 2 apps will be CO; a small subset of custom apps may be candidates for CN (e.g., Stateful to Stateless)
- For new custom apps: In-going assumption is for CN (a small subset could be CO)

Legend:
- CO: Cloud Optimize
- CN: Cloud Native
- L&S: Lift and shift

Legend:
- CO: Cloud Optimize
- CN: Cloud Native
- L&S: Lift and shift
Summary

• Rigorous application portfolio rationalization will allow us to separate the “wheat from the chaff”

• Based on a nuanced understanding of the application’s strategic value to the business and calculated cost savings, we can construct a roadmap for each Category of app (category 1, 2, 3 and 4)

• Based on application category, a default approach can be established for existing as well as new apps
4. Implementing a Cloud Transformation Program
Building Blocks of the Model: CTMO, CCoE, and CIF

1. Cloud Transformation Management Office
 • The “control center” that drives the program

2. Cloud Center of Excellence
 • An Enterprise capability of enablers

3. Cloud Implementation Factory
 • The execution arm
Overall Implementation Model

Govern

CTMO

Enable

CCoE

- “Force Multiplier”
- Drive efficiency and consistency

Execute

CIF

- Plan, measure
- Drive collaboration and learnings

- BU teams
- Tactical execution
CTMO (cloud transformation management office): The “Control Center”

• The CTMO plans, measures, governs and executes the Transformation Program:
 • Governance
 • Decision body, communication and escalation
 • Application Portfolio Assessment
 • Program Management
 • Plans, workstreams and resources
 • Business case and financial plan
 • Current state, next state, optimized state
CTMO: Governance

• Recommend:
 • Model: Federal/State
 • Federal: Focus on Common standards, shared services, standardized tooling. Optimize for CommerceHub
 • State: Focus on BU-specific needs and differentiated features
 • 2-Tier: Advisory and Management-level

• Governance output:
 • Mandated: Decisions, Prescriptive guidance
 • Applies to all stakeholders
 • Recommended: Guidelines, design patterns
 • Best practice
 • Exception process:
 • Allowance for unique circumstances
Cloud CoE: Common Set of Enablers

• Establish a CCoE to address the following:

 • Cloud Readiness
 • Readiness tollgate process
 • Migration Toolkit

 • Cloud Engineering
 • Standards and Toolbox
 • Sandbox environment
 • Cloud SME’s

 • Engagement Model
 • CCoE and CIF alignment and collaboration
Cloud CoE: Main Components

Migration Enablers
- Cloud Readiness Process
- Cloud Migration Toolkit

Future State Enablers
- Reference Architectures
- Common Standards, Services and Toolbox

Execution Enablers
- Cloud Sandbox
- Cloud SME's

CCoE and CIF Engagement Model
CCoE Details

• Acts as a force multiplier:
 • Provide expertise through SME’s
 • Translate good intentions into tangible value
 • Provide resources to meet needs of BU Teams
 • Standards & Toolbox
 • Cloud migration toolkit
 • Establish Sandbox environment for trying out ideas and building tools and services
 • Define a tollgate-based process for assessing cloud readiness
 • “Open book” format – known expectations and enabling resources
 • Underpin CoE model with robust collaboration
 • Defined engagement model
Cloud Implementation Factory: Execution Arm

• The CIF is a virtual team that implements the migration by leveraging the CCoE enablers and executing a “play” from a pre-defined Playbook:

 • Playbook
 • Lift and Shift
 • Cloud Optimize
 • Cloud Native
Execution @ the BU Team Level

Key Artifacts
- Current State architecture
- Future State architecture
- Cost Model (before/after)
- Readiness assessment plan
- Cloud migration plan

BU Team Resources
- Arch
- Engr Mgr
- Prod Mgr
- DBA
- DevOps
- Devs

Aligned Resources
- Ops
- CTMO
- CCoE
Execution Team

• Detail:
 • CTMO rep assigned to align with overall program plan
 • Cloud CoE provides shared resources (SME’s)

• Eg. of SME role: DevOps Engineer Role
 • Own CI and CD process and associated artifacts
 • “Infect the Host” model for disseminating knowledge re. core tools (eg., Chef, Bamboo, CloudFormation, Packer, etc.)
 • Responsible for coordination with Cloud CoE with regard to standards and best practices
 • Provide automated tools/scripts to developers for facilitating deployments as part of development lifecycle
Agenda

• Big Data example
• Best Practice discussion
Best Practice Examples

Typical patterns:

• IAC (or SDI)
• Scale out
• Scale up
 • Predictable scaling -- seasonal or scheduled
• On-demand environments
 • CloudFormation and automation
• Engineering deployment pipelines
• NCA (native cloud application) development
Questions, Comments

Thank You!